1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
use crate::{
    bitmap::{
        utils::{zip_validity, ZipValidity},
        Bitmap,
    },
    buffer::Buffer,
    datatypes::*,
    error::Error,
    trusted_len::TrustedLen,
    types::{days_ms, f16, months_days_ns, NativeType},
};

use super::Array;
use either::Either;

mod ffi;
pub(super) mod fmt;
mod from_natural;
mod iterator;
pub use iterator::*;
mod mutable;
pub use mutable::*;

/// A [`PrimitiveArray`] is Arrow's semantically equivalent of an immutable `Vec<Option<T>>` where
/// T is [`NativeType`] (e.g. [`i32`]). It implements [`Array`].
///
/// One way to think about a [`PrimitiveArray`] is `(DataType, Arc<Vec<T>>, Option<Arc<Vec<u8>>>)`
/// where:
/// * the first item is the array's logical type
/// * the second is the immutable values
/// * the third is the immutable validity (whether a value is null or not as a bitmap).
///
/// The size of this struct is `O(1)`, as all data is stored behind an [`std::sync::Arc`].
/// # Example
/// ```
/// use arrow2::array::PrimitiveArray;
/// use arrow2::bitmap::Bitmap;
/// use arrow2::buffer::Buffer;
///
/// let array = PrimitiveArray::from([Some(1i32), None, Some(10)]);
/// assert_eq!(array.value(0), 1);
/// assert_eq!(array.iter().collect::<Vec<_>>(), vec![Some(&1i32), None, Some(&10)]);
/// assert_eq!(array.values_iter().copied().collect::<Vec<_>>(), vec![1, 0, 10]);
/// // the underlying representation
/// assert_eq!(array.values(), &Buffer::from(vec![1i32, 0, 10]));
/// assert_eq!(array.validity(), Some(&Bitmap::from([true, false, true])));
///
/// ```
#[derive(Clone)]
pub struct PrimitiveArray<T: NativeType> {
    data_type: DataType,
    values: Buffer<T>,
    validity: Option<Bitmap>,
}

fn check<T: NativeType>(
    data_type: &DataType,
    values: &[T],
    validity: &Option<Bitmap>,
) -> Result<(), Error> {
    if validity
        .as_ref()
        .map_or(false, |validity| validity.len() != values.len())
    {
        return Err(Error::oos(
            "validity mask length must match the number of values",
        ));
    }

    if data_type.to_physical_type() != PhysicalType::Primitive(T::PRIMITIVE) {
        return Err(Error::oos(
            "PrimitiveArray can only be initialized with a DataType whose physical type is Primitive",
        ));
    }
    Ok(())
}

impl<T: NativeType> PrimitiveArray<T> {
    /// The canonical method to create a [`PrimitiveArray`] out of its internal components.
    /// # Implementation
    /// This function is `O(1)`.
    ///
    /// # Errors
    /// This function errors iff:
    /// * The validity is not `None` and its length is different from `values`'s length
    /// * The `data_type`'s [`PhysicalType`] is not equal to [`PhysicalType::Primitive(T::PRIMITIVE)`]
    pub fn try_new(
        data_type: DataType,
        values: Buffer<T>,
        validity: Option<Bitmap>,
    ) -> Result<Self, Error> {
        check(&data_type, &values, &validity)?;
        Ok(Self {
            data_type,
            values,
            validity,
        })
    }

    /// Returns a new [`PrimitiveArray`] with a different logical type.
    ///
    /// This function is useful to assign a different [`DataType`] to the array.
    /// Used to change the arrays' logical type (see example).
    /// # Example
    /// ```
    /// use arrow2::array::Int32Array;
    /// use arrow2::datatypes::DataType;
    ///
    /// let array = Int32Array::from(&[Some(1), None, Some(2)]).to(DataType::Date32);
    /// assert_eq!(
    ///    format!("{:?}", array),
    ///    "Date32[1970-01-02, None, 1970-01-03]"
    /// );
    /// ```
    /// # Panics
    /// Panics iff the `data_type`'s [`PhysicalType`] is not equal to [`PhysicalType::Primitive(T::PRIMITIVE)`]
    #[inline]
    #[must_use]
    pub fn to(self, data_type: DataType) -> Self {
        check(&data_type, &self.values, &self.validity).unwrap();
        Self {
            data_type,
            values: self.values,
            validity: self.validity,
        }
    }

    /// Creates a (non-null) [`PrimitiveArray`] from a vector of values.
    /// This function is `O(1)`.
    /// # Examples
    /// ```
    /// use arrow2::array::PrimitiveArray;
    ///
    /// let array = PrimitiveArray::from_vec(vec![1, 2, 3]);
    /// assert_eq!(format!("{:?}", array), "Int32[1, 2, 3]");
    /// ```
    pub fn from_vec(values: Vec<T>) -> Self {
        Self::new(T::PRIMITIVE.into(), values.into(), None)
    }

    /// Returns an iterator over the values and validity, `Option<&T>`.
    #[inline]
    pub fn iter(&self) -> ZipValidity<&T, std::slice::Iter<T>> {
        zip_validity(
            self.values().iter(),
            self.validity().as_ref().map(|x| x.iter()),
        )
    }

    /// Returns an iterator of the values, `&T`, ignoring the arrays' validity.
    #[inline]
    pub fn values_iter(&self) -> std::slice::Iter<T> {
        self.values().iter()
    }

    /// Returns the length of this array
    #[inline]
    pub fn len(&self) -> usize {
        self.values.len()
    }

    /// The values [`Buffer`].
    /// Values on null slots are undetermined (they can be anything).
    #[inline]
    pub fn values(&self) -> &Buffer<T> {
        &self.values
    }

    /// Returns the optional validity.
    #[inline]
    pub fn validity(&self) -> Option<&Bitmap> {
        self.validity.as_ref()
    }

    /// Returns the arrays' [`DataType`].
    #[inline]
    pub fn data_type(&self) -> &DataType {
        &self.data_type
    }

    /// Returns the value at slot `i`.
    ///
    /// Equivalent to `self.values()[i]`. The value of a null slot is undetermined (it can be anything).
    /// # Panic
    /// This function panics iff `i >= self.len`.
    #[inline]
    pub fn value(&self, i: usize) -> T {
        self.values()[i]
    }

    /// Returns the value at index `i`.
    /// The value on null slots is undetermined (it can be anything).
    /// # Safety
    /// Caller must be sure that `i < self.len()`
    #[inline]
    pub unsafe fn value_unchecked(&self, i: usize) -> T {
        *self.values.get_unchecked(i)
    }

    /// Returns a clone of this [`PrimitiveArray`] sliced by an offset and length.
    /// # Implementation
    /// This operation is `O(1)` as it amounts to increase two ref counts.
    /// # Examples
    /// ```
    /// use arrow2::array::PrimitiveArray;
    ///
    /// let array = PrimitiveArray::from_vec(vec![1, 2, 3]);
    /// assert_eq!(format!("{:?}", array), "Int32[1, 2, 3]");
    /// let sliced = array.slice(1, 1);
    /// assert_eq!(format!("{:?}", sliced), "Int32[2]");
    /// // note: `sliced` and `array` share the same memory region.
    /// ```
    /// # Panic
    /// This function panics iff `offset + length > self.len()`.
    #[inline]
    #[must_use]
    pub fn slice(&self, offset: usize, length: usize) -> Self {
        assert!(
            offset + length <= self.len(),
            "offset + length may not exceed length of array"
        );
        unsafe { self.slice_unchecked(offset, length) }
    }

    /// Returns a clone of this [`PrimitiveArray`] sliced by an offset and length.
    /// # Implementation
    /// This operation is `O(1)` as it amounts to increase two ref counts.
    /// # Safety
    /// The caller must ensure that `offset + length <= self.len()`.
    #[inline]
    #[must_use]
    pub unsafe fn slice_unchecked(&self, offset: usize, length: usize) -> Self {
        let validity = self
            .validity
            .clone()
            .map(|x| x.slice_unchecked(offset, length));
        Self {
            data_type: self.data_type.clone(),
            values: self.values.clone().slice_unchecked(offset, length),
            validity,
        }
    }

    /// Returns this [`PrimitiveArray`] with a new validity.
    /// # Panics
    /// This function panics iff `validity.len() != self.len()`.
    #[must_use]
    pub fn with_validity(mut self, validity: Option<Bitmap>) -> Self {
        self.set_validity(validity);
        self
    }

    /// Sets the validity of this [`PrimitiveArray`].
    /// # Panics
    /// This function panics iff `validity.len() != self.len()`.
    pub fn set_validity(&mut self, validity: Option<Bitmap>) {
        if matches!(&validity, Some(bitmap) if bitmap.len() != self.len()) {
            panic!("validity's length must be equal to the array's length")
        }
        self.validity = validity;
    }

    /// Returns this [`PrimitiveArray`] with new values.
    /// # Panics
    /// This function panics iff `values.len() != self.len()`.
    #[must_use]
    pub fn with_values(mut self, values: Buffer<T>) -> Self {
        self.set_values(values);
        self
    }

    /// Update the values of this [`PrimitiveArray`].
    /// # Panics
    /// This function panics iff `values.len() != self.len()`.
    pub fn set_values(&mut self, values: Buffer<T>) {
        assert_eq!(
            values.len(),
            self.len(),
            "values' length must be equal to this arrays' length"
        );
        self.values = values;
    }

    /// Applies a function `f` to the validity of this array.
    ///
    /// This is an API to leverage clone-on-write
    /// # Panics
    /// This function panics if the function `f` modifies the length of the [`Bitmap`].
    pub fn apply_validity<F: FnOnce(Bitmap) -> Bitmap>(&mut self, f: F) {
        if let Some(validity) = std::mem::take(&mut self.validity) {
            self.set_validity(Some(f(validity)))
        }
    }

    /// Returns an option of a mutable reference to the values of this [`PrimitiveArray`].
    pub fn get_mut_values(&mut self) -> Option<&mut [T]> {
        self.values.get_mut().map(|x| x.as_mut())
    }

    /// Try to convert this [`PrimitiveArray`] to a [`MutablePrimitiveArray`] via copy-on-write semantics.
    ///
    /// A [`PrimitiveArray`] is backed by a [`Buffer`] and [`Bitmap`] which are essentially `Arc<Vec<_>>`.
    /// This function returns a [`MutablePrimitiveArray`] (via [`std::sync::Arc::get_mut`]) iff both values
    /// and validity have not been cloned / are unique references to their underlying vectors.
    ///
    /// This function is primarily used to re-use memory regions.
    #[must_use]
    pub fn into_mut(mut self) -> Either<Self, MutablePrimitiveArray<T>> {
        use Either::*;

        if let Some(bitmap) = self.validity {
            match bitmap.into_mut() {
                Left(bitmap) => Left(PrimitiveArray::new(
                    self.data_type,
                    self.values,
                    Some(bitmap),
                )),
                Right(mutable_bitmap) => match self.values.get_mut().map(std::mem::take) {
                    Some(values) => Right(MutablePrimitiveArray::from_data(
                        self.data_type,
                        values,
                        Some(mutable_bitmap),
                    )),
                    None => Left(PrimitiveArray::new(
                        self.data_type,
                        self.values,
                        Some(mutable_bitmap.into()),
                    )),
                },
            }
        } else {
            match self.values.get_mut().map(std::mem::take) {
                Some(values) => Right(MutablePrimitiveArray::from_data(
                    self.data_type,
                    values,
                    None,
                )),
                None => Left(PrimitiveArray::new(self.data_type, self.values, None)),
            }
        }
    }

    /// Returns a new empty (zero-length) [`PrimitiveArray`].
    pub fn new_empty(data_type: DataType) -> Self {
        Self::new(data_type, Buffer::new(), None)
    }

    /// Returns a new [`PrimitiveArray`] where all slots are null / `None`.
    #[inline]
    pub fn new_null(data_type: DataType, length: usize) -> Self {
        Self::new(
            data_type,
            vec![T::default(); length].into(),
            Some(Bitmap::new_zeroed(length)),
        )
    }

    /// Creates a (non-null) [`PrimitiveArray`] from an iterator of values.
    /// # Implementation
    /// This does not assume that the iterator has a known length.
    pub fn from_values<I: IntoIterator<Item = T>>(iter: I) -> Self {
        Self::new(T::PRIMITIVE.into(), Vec::<T>::from_iter(iter).into(), None)
    }

    /// Creates a (non-null) [`PrimitiveArray`] from a slice of values.
    /// # Implementation
    /// This is essentially a memcopy and is thus `O(N)`
    pub fn from_slice<P: AsRef<[T]>>(slice: P) -> Self {
        Self::new(
            T::PRIMITIVE.into(),
            Vec::<T>::from(slice.as_ref()).into(),
            None,
        )
    }

    /// Creates a (non-null) [`PrimitiveArray`] from a [`TrustedLen`] of values.
    /// # Implementation
    /// This does not assume that the iterator has a known length.
    pub fn from_trusted_len_values_iter<I: TrustedLen<Item = T>>(iter: I) -> Self {
        MutablePrimitiveArray::<T>::from_trusted_len_values_iter(iter).into()
    }

    /// Creates a new [`PrimitiveArray`] from an iterator over values
    /// # Safety
    /// The iterator must be [`TrustedLen`](https://doc.rust-lang.org/std/iter/trait.TrustedLen.html).
    /// I.e. that `size_hint().1` correctly reports its length.
    pub unsafe fn from_trusted_len_values_iter_unchecked<I: Iterator<Item = T>>(iter: I) -> Self {
        MutablePrimitiveArray::<T>::from_trusted_len_values_iter_unchecked(iter).into()
    }

    /// Creates a [`PrimitiveArray`] from a [`TrustedLen`] of optional values.
    pub fn from_trusted_len_iter<I: TrustedLen<Item = Option<T>>>(iter: I) -> Self {
        MutablePrimitiveArray::<T>::from_trusted_len_iter(iter).into()
    }

    /// Creates a [`PrimitiveArray`] from an iterator of optional values.
    /// # Safety
    /// The iterator must be [`TrustedLen`](https://doc.rust-lang.org/std/iter/trait.TrustedLen.html).
    /// I.e. that `size_hint().1` correctly reports its length.
    pub unsafe fn from_trusted_len_iter_unchecked<I: Iterator<Item = Option<T>>>(iter: I) -> Self {
        MutablePrimitiveArray::<T>::from_trusted_len_iter_unchecked(iter).into()
    }

    /// Boxes self into a [`Box<dyn Array>`].
    pub fn boxed(self) -> Box<dyn Array> {
        Box::new(self)
    }

    /// Boxes self into a [`std::sync::Arc<dyn Array>`].
    pub fn arced(self) -> std::sync::Arc<dyn Array> {
        std::sync::Arc::new(self)
    }

    /// Alias for `Self::try_new(..).unwrap()`.
    /// # Panics
    /// This function errors iff:
    /// * The validity is not `None` and its length is different from `values`'s length
    /// * The `data_type`'s [`PhysicalType`] is not equal to [`PhysicalType::Primitive`].
    pub fn new(data_type: DataType, values: Buffer<T>, validity: Option<Bitmap>) -> Self {
        Self::try_new(data_type, values, validity).unwrap()
    }

    /// Alias for `Self::try_new(..).unwrap()`.
    pub fn from_data(data_type: DataType, values: Buffer<T>, validity: Option<Bitmap>) -> Self {
        Self::new(data_type, values, validity)
    }
}

impl<T: NativeType> Array for PrimitiveArray<T> {
    #[inline]
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    #[inline]
    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }

    #[inline]
    fn len(&self) -> usize {
        self.values.len()
    }

    #[inline]
    fn data_type(&self) -> &DataType {
        self.data_type()
    }

    fn validity(&self) -> Option<&Bitmap> {
        self.validity.as_ref()
    }

    fn slice(&self, offset: usize, length: usize) -> Box<dyn Array> {
        Box::new(self.slice(offset, length))
    }
    unsafe fn slice_unchecked(&self, offset: usize, length: usize) -> Box<dyn Array> {
        Box::new(self.slice_unchecked(offset, length))
    }
    fn with_validity(&self, validity: Option<Bitmap>) -> Box<dyn Array> {
        Box::new(self.clone().with_validity(validity))
    }
    fn to_boxed(&self) -> Box<dyn Array> {
        Box::new(self.clone())
    }
}

/// A type definition [`PrimitiveArray`] for `i8`
pub type Int8Array = PrimitiveArray<i8>;
/// A type definition [`PrimitiveArray`] for `i16`
pub type Int16Array = PrimitiveArray<i16>;
/// A type definition [`PrimitiveArray`] for `i32`
pub type Int32Array = PrimitiveArray<i32>;
/// A type definition [`PrimitiveArray`] for `i64`
pub type Int64Array = PrimitiveArray<i64>;
/// A type definition [`PrimitiveArray`] for `i128`
pub type Int128Array = PrimitiveArray<i128>;
/// A type definition [`PrimitiveArray`] for [`days_ms`]
pub type DaysMsArray = PrimitiveArray<days_ms>;
/// A type definition [`PrimitiveArray`] for [`months_days_ns`]
pub type MonthsDaysNsArray = PrimitiveArray<months_days_ns>;
/// A type definition [`PrimitiveArray`] for `f16`
pub type Float16Array = PrimitiveArray<f16>;
/// A type definition [`PrimitiveArray`] for `f32`
pub type Float32Array = PrimitiveArray<f32>;
/// A type definition [`PrimitiveArray`] for `f64`
pub type Float64Array = PrimitiveArray<f64>;
/// A type definition [`PrimitiveArray`] for `u8`
pub type UInt8Array = PrimitiveArray<u8>;
/// A type definition [`PrimitiveArray`] for `u16`
pub type UInt16Array = PrimitiveArray<u16>;
/// A type definition [`PrimitiveArray`] for `u32`
pub type UInt32Array = PrimitiveArray<u32>;
/// A type definition [`PrimitiveArray`] for `u64`
pub type UInt64Array = PrimitiveArray<u64>;

/// A type definition [`MutablePrimitiveArray`] for `i8`
pub type Int8Vec = MutablePrimitiveArray<i8>;
/// A type definition [`MutablePrimitiveArray`] for `i16`
pub type Int16Vec = MutablePrimitiveArray<i16>;
/// A type definition [`MutablePrimitiveArray`] for `i32`
pub type Int32Vec = MutablePrimitiveArray<i32>;
/// A type definition [`MutablePrimitiveArray`] for `i64`
pub type Int64Vec = MutablePrimitiveArray<i64>;
/// A type definition [`MutablePrimitiveArray`] for `i128`
pub type Int128Vec = MutablePrimitiveArray<i128>;
/// A type definition [`MutablePrimitiveArray`] for [`days_ms`]
pub type DaysMsVec = MutablePrimitiveArray<days_ms>;
/// A type definition [`MutablePrimitiveArray`] for [`months_days_ns`]
pub type MonthsDaysNsVec = MutablePrimitiveArray<months_days_ns>;
/// A type definition [`MutablePrimitiveArray`] for `f16`
pub type Float16Vec = MutablePrimitiveArray<f16>;
/// A type definition [`MutablePrimitiveArray`] for `f32`
pub type Float32Vec = MutablePrimitiveArray<f32>;
/// A type definition [`MutablePrimitiveArray`] for `f64`
pub type Float64Vec = MutablePrimitiveArray<f64>;
/// A type definition [`MutablePrimitiveArray`] for `u8`
pub type UInt8Vec = MutablePrimitiveArray<u8>;
/// A type definition [`MutablePrimitiveArray`] for `u16`
pub type UInt16Vec = MutablePrimitiveArray<u16>;
/// A type definition [`MutablePrimitiveArray`] for `u32`
pub type UInt32Vec = MutablePrimitiveArray<u32>;
/// A type definition [`MutablePrimitiveArray`] for `u64`
pub type UInt64Vec = MutablePrimitiveArray<u64>;

impl<T: NativeType> Default for PrimitiveArray<T> {
    fn default() -> Self {
        PrimitiveArray::new(T::PRIMITIVE.into(), Default::default(), None)
    }
}