1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
use std::{iter::FromIterator, ops::Deref, sync::Arc, usize};

use super::Bytes;

/// [`Buffer`] is a contiguous memory region that can be shared across
/// thread boundaries.
///
/// The easiest way to think about [`Buffer<T>`] is being equivalent to
/// a `Arc<Vec<T>>`, with the following differences:
/// * slicing and cloning is `O(1)`.
/// * it supports external allocated memory
///
/// The easiest way to create one is to use its implementation of `From<Vec<T>>`.
///
/// # Examples
/// ```
/// use arrow2::buffer::Buffer;
///
/// let mut buffer: Buffer<u32> = vec![1, 2, 3].into();
/// assert_eq!(buffer.as_ref(), [1, 2, 3].as_ref());
///
/// // it supports copy-on-write semantics (i.e. back to a `Vec`)
/// let vec: &mut [u32] = buffer.get_mut().unwrap();
/// assert_eq!(vec, &mut [1, 2, 3]);
///
/// // cloning and slicing is `O(1)` (data is shared)
/// let mut buffer: Buffer<u32> = vec![1, 2, 3].into();
/// let slice = buffer.clone().slice(1, 1);
/// assert_eq!(slice.as_ref(), [2].as_ref());
/// // but cloning forbids getting mut since `slice` and `buffer` now share data
/// assert_eq!(buffer.get_mut(), None);
/// ```
#[derive(Clone)]
pub struct Buffer<T> {
    /// the internal byte buffer.
    data: Arc<Bytes<T>>,

    /// The offset into the buffer.
    offset: usize,

    // the length of the buffer. Given a region `data` of N bytes, [offset..offset+length] is visible
    // to this buffer.
    length: usize,
}

impl<T: PartialEq> PartialEq for Buffer<T> {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.deref() == other.deref()
    }
}

impl<T: std::fmt::Debug> std::fmt::Debug for Buffer<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        std::fmt::Debug::fmt(&**self, f)
    }
}

impl<T> Default for Buffer<T> {
    #[inline]
    fn default() -> Self {
        Vec::new().into()
    }
}

impl<T> Buffer<T> {
    /// Creates an empty [`Buffer`].
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Auxiliary method to create a new Buffer
    pub(crate) fn from_bytes(bytes: Bytes<T>) -> Self {
        let length = bytes.len();
        Buffer {
            data: Arc::new(bytes),
            offset: 0,
            length,
        }
    }

    /// Returns the number of bytes in the buffer
    #[inline]
    pub fn len(&self) -> usize {
        self.length
    }

    /// Returns whether the buffer is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the byte slice stored in this buffer
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        // Safety:
        // invariant of this struct `offset + length <= data.len()`
        debug_assert!(self.offset + self.length <= self.data.len());
        unsafe {
            self.data
                .get_unchecked(self.offset..self.offset + self.length)
        }
    }

    /// Returns a new [`Buffer`] that is a slice of this buffer starting at `offset`.
    /// Doing so allows the same memory region to be shared between buffers.
    /// # Panics
    /// Panics iff `offset` is larger than `len`.
    #[inline]
    pub fn slice(self, offset: usize, length: usize) -> Self {
        assert!(
            offset + length <= self.len(),
            "the offset of the new Buffer cannot exceed the existing length"
        );
        // Safety: we just checked bounds
        unsafe { self.slice_unchecked(offset, length) }
    }

    /// Returns a new [`Buffer`] that is a slice of this buffer starting at `offset`.
    /// Doing so allows the same memory region to be shared between buffers.
    /// # Safety
    /// The caller must ensure `offset + length <= self.len()`
    #[inline]
    pub unsafe fn slice_unchecked(mut self, offset: usize, length: usize) -> Self {
        self.offset += offset;
        self.length = length;
        self
    }

    /// Returns a pointer to the start of this buffer.
    #[inline]
    pub(crate) fn as_ptr(&self) -> *const T {
        self.data.deref().as_ptr()
    }

    /// Returns the offset of this buffer.
    #[inline]
    pub fn offset(&self) -> usize {
        self.offset
    }

    /// Returns a mutable reference to its underlying [`Vec`], if possible.
    ///
    /// This operation returns [`Some`] iff this [`Buffer`]:
    /// * has not been sliced with an offset
    /// * has not been cloned (i.e. [`Arc`]`::get_mut` yields [`Some`])
    /// * has not been imported from the c data interface (FFI)
    pub fn get_mut(&mut self) -> Option<&mut Vec<T>> {
        if self.offset != 0 {
            None
        } else {
            Arc::get_mut(&mut self.data).and_then(|b| b.get_vec())
        }
    }

    /// Get the strong count of underlying `Arc` data buffer.
    pub fn shared_count_strong(&self) -> usize {
        Arc::strong_count(&self.data)
    }

    /// Get the weak count of underlying `Arc` data buffer.
    pub fn shared_count_weak(&self) -> usize {
        Arc::weak_count(&self.data)
    }
}

impl<T> From<Vec<T>> for Buffer<T> {
    #[inline]
    fn from(p: Vec<T>) -> Self {
        let bytes: Bytes<T> = p.into();
        Self {
            offset: 0,
            length: bytes.len(),
            data: Arc::new(bytes),
        }
    }
}

impl<T> std::ops::Deref for Buffer<T> {
    type Target = [T];

    #[inline]
    fn deref(&self) -> &[T] {
        self.as_slice()
    }
}

impl<T> FromIterator<T> for Buffer<T> {
    #[inline]
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        Vec::from_iter(iter).into()
    }
}