1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
//! Contains operators to filter arrays such as [`filter`].
use crate::array::growable::{make_growable, Growable};
use crate::bitmap::utils::{BitChunk, BitChunkIterExact, BitChunksExact};
use crate::bitmap::{utils::SlicesIterator, Bitmap, MutableBitmap};
use crate::chunk::Chunk;
use crate::datatypes::DataType;
use crate::error::Result;
use crate::types::simd::{NativeSimd, Simd};
use crate::types::BitChunkOnes;
use crate::{array::*, types::NativeType};
use num_traits::One;
use num_traits::Zero;

/// Function that can filter arbitrary arrays
pub type Filter<'a> = Box<dyn Fn(&dyn Array) -> Box<dyn Array> + 'a + Send + Sync>;

/// # Safety
/// This assumes that the `mask_chunks` contains a number of set/true items equal
/// to `filter_count`
unsafe fn nonnull_filter_impl<T, I>(values: &[T], mut mask_chunks: I, filter_count: usize) -> Vec<T>
where
    T: NativeType + Simd,
    I: BitChunkIterExact<<<T as Simd>::Simd as NativeSimd>::Chunk>,
{
    let mut chunks = values.chunks_exact(T::Simd::LANES);
    let mut new = Vec::<T>::with_capacity(filter_count);
    let mut dst = new.as_mut_ptr();
    chunks
        .by_ref()
        .zip(mask_chunks.by_ref())
        .for_each(|(chunk, validity_chunk)| {
            let ones_iter = BitChunkOnes::new(validity_chunk);

            let (size, _) = ones_iter.size_hint();
            if size == T::Simd::LANES {
                // Fast path: all lanes are set
                unsafe {
                    std::ptr::copy(chunk.as_ptr(), dst, size);
                    dst = dst.add(size);
                }
            } else {
                for pos in ones_iter {
                    dst.write(chunk[pos]);
                    dst = dst.add(1);
                }
            }
        });

    chunks
        .remainder()
        .iter()
        .zip(mask_chunks.remainder_iter())
        .for_each(|(value, b)| {
            if b {
                unsafe {
                    dst.write(*value);
                    dst = dst.add(1);
                };
            }
        });

    unsafe { new.set_len(filter_count) };
    new
}

/// # Safety
/// This assumes that the `mask_chunks` contains a number of set/true items equal
/// to `filter_count`
unsafe fn null_filter_impl<T, I>(
    values: &[T],
    validity: &Bitmap,
    mut mask_chunks: I,
    filter_count: usize,
) -> (Vec<T>, MutableBitmap)
where
    T: NativeType + Simd,
    I: BitChunkIterExact<<<T as Simd>::Simd as NativeSimd>::Chunk>,
{
    let mut chunks = values.chunks_exact(T::Simd::LANES);

    let mut validity_chunks = validity.chunks::<<T::Simd as NativeSimd>::Chunk>();

    let mut new = Vec::<T>::with_capacity(filter_count);
    let mut dst = new.as_mut_ptr();
    let mut new_validity = MutableBitmap::with_capacity(filter_count);

    chunks
        .by_ref()
        .zip(validity_chunks.by_ref())
        .zip(mask_chunks.by_ref())
        .for_each(|((chunk, validity_chunk), mask_chunk)| {
            let ones_iter = BitChunkOnes::new(mask_chunk);
            let (size, _) = ones_iter.size_hint();

            if size == T::Simd::LANES {
                // Fast path: all lanes are set
                unsafe {
                    std::ptr::copy(chunk.as_ptr(), dst, size);
                    dst = dst.add(size);
                    new_validity.extend_from_slice(validity_chunk.to_ne_bytes().as_ref(), 0, size);
                }
            } else {
                for pos in ones_iter {
                    dst.write(chunk[pos]);
                    dst = dst.add(1);
                    new_validity.push(
                        validity_chunk & (<<<T as Simd>::Simd as NativeSimd>::Chunk>::one() << pos)
                            > <<<T as Simd>::Simd as NativeSimd>::Chunk>::zero(),
                    );
                }
            }
        });

    chunks
        .remainder()
        .iter()
        .zip(validity_chunks.remainder_iter())
        .zip(mask_chunks.remainder_iter())
        .for_each(|((value, is_valid), is_selected)| {
            if is_selected {
                unsafe {
                    dst.write(*value);
                    dst = dst.add(1);
                    new_validity.push_unchecked(is_valid);
                };
            }
        });

    unsafe { new.set_len(filter_count) };
    (new, new_validity)
}

fn null_filter_simd<T: NativeType + Simd>(
    values: &[T],
    validity: &Bitmap,
    mask: &Bitmap,
) -> (Vec<T>, MutableBitmap) {
    assert_eq!(values.len(), mask.len());
    let filter_count = mask.len() - mask.unset_bits();

    let (slice, offset, length) = mask.as_slice();
    if offset == 0 {
        let mask_chunks = BitChunksExact::<<T::Simd as NativeSimd>::Chunk>::new(slice, length);
        unsafe { null_filter_impl(values, validity, mask_chunks, filter_count) }
    } else {
        let mask_chunks = mask.chunks::<<T::Simd as NativeSimd>::Chunk>();
        unsafe { null_filter_impl(values, validity, mask_chunks, filter_count) }
    }
}

fn nonnull_filter_simd<T: NativeType + Simd>(values: &[T], mask: &Bitmap) -> Vec<T> {
    assert_eq!(values.len(), mask.len());
    let filter_count = mask.len() - mask.unset_bits();

    let (slice, offset, length) = mask.as_slice();
    if offset == 0 {
        let mask_chunks = BitChunksExact::<<T::Simd as NativeSimd>::Chunk>::new(slice, length);
        unsafe { nonnull_filter_impl(values, mask_chunks, filter_count) }
    } else {
        let mask_chunks = mask.chunks::<<T::Simd as NativeSimd>::Chunk>();
        unsafe { nonnull_filter_impl(values, mask_chunks, filter_count) }
    }
}

fn filter_nonnull_primitive<T: NativeType + Simd>(
    array: &PrimitiveArray<T>,
    mask: &Bitmap,
) -> PrimitiveArray<T> {
    assert_eq!(array.len(), mask.len());

    if let Some(validity) = array.validity() {
        let (values, validity) = null_filter_simd(array.values(), validity, mask);
        PrimitiveArray::<T>::new(array.data_type().clone(), values.into(), validity.into())
    } else {
        let values = nonnull_filter_simd(array.values(), mask);
        PrimitiveArray::<T>::new(array.data_type().clone(), values.into(), None)
    }
}

fn filter_primitive<T: NativeType + Simd>(
    array: &PrimitiveArray<T>,
    mask: &BooleanArray,
) -> PrimitiveArray<T> {
    // todo: branch on mask.validity()
    filter_nonnull_primitive(array, mask.values())
}

fn filter_growable<'a>(growable: &mut impl Growable<'a>, chunks: &[(usize, usize)]) {
    chunks
        .iter()
        .for_each(|(start, len)| growable.extend(0, *start, *len));
}

/// Returns a prepared function optimized to filter multiple arrays.
/// Creating this function requires time, but using it is faster than [filter] when the
/// same filter needs to be applied to multiple arrays (e.g. a multiple columns).
pub fn build_filter(filter: &BooleanArray) -> Result<Filter> {
    let iter = SlicesIterator::new(filter.values());
    let filter_count = iter.slots();
    let chunks = iter.collect::<Vec<_>>();

    use crate::datatypes::PhysicalType::*;
    Ok(Box::new(move |array: &dyn Array| {
        match array.data_type().to_physical_type() {
            Primitive(primitive) => with_match_primitive_type!(primitive, |$T| {
                let array = array.as_any().downcast_ref().unwrap();
                let mut growable =
                    growable::GrowablePrimitive::<$T>::new(vec![array], false, filter_count);
                filter_growable(&mut growable, &chunks);
                let array: PrimitiveArray<$T> = growable.into();
                Box::new(array)
            }),
            Utf8 => {
                let array = array.as_any().downcast_ref::<Utf8Array<i32>>().unwrap();
                let mut growable = growable::GrowableUtf8::new(vec![array], false, filter_count);
                filter_growable(&mut growable, &chunks);
                let array: Utf8Array<i32> = growable.into();
                Box::new(array)
            }
            LargeUtf8 => {
                let array = array.as_any().downcast_ref::<Utf8Array<i64>>().unwrap();
                let mut growable = growable::GrowableUtf8::new(vec![array], false, filter_count);
                filter_growable(&mut growable, &chunks);
                let array: Utf8Array<i64> = growable.into();
                Box::new(array)
            }
            _ => {
                let mut mutable = make_growable(&[array], false, filter_count);
                chunks
                    .iter()
                    .for_each(|(start, len)| mutable.extend(0, *start, *len));
                mutable.as_box()
            }
        }
    }))
}

/// Filters an [Array], returning elements matching the filter (i.e. where the values are true).
///
/// Note that the nulls of `filter` are interpreted as `false` will lead to these elements being
/// masked out.
///
/// # Example
/// ```rust
/// # use arrow2::array::{Int32Array, PrimitiveArray, BooleanArray};
/// # use arrow2::error::Result;
/// # use arrow2::compute::filter::filter;
/// # fn main() -> Result<()> {
/// let array = PrimitiveArray::from_slice([5, 6, 7, 8, 9]);
/// let filter_array = BooleanArray::from_slice(&vec![true, false, false, true, false]);
/// let c = filter(&array, &filter_array)?;
/// let c = c.as_any().downcast_ref::<Int32Array>().unwrap();
/// assert_eq!(c, &PrimitiveArray::from_slice(vec![5, 8]));
/// # Ok(())
/// # }
/// ```
pub fn filter(array: &dyn Array, filter: &BooleanArray) -> Result<Box<dyn Array>> {
    // The validities may be masking out `true` bits, making the filter operation
    // based on the values incorrect
    if let Some(validities) = filter.validity() {
        let values = filter.values();
        let new_values = values & validities;
        let filter = BooleanArray::new(DataType::Boolean, new_values, None);
        return crate::compute::filter::filter(array, &filter);
    }

    let false_count = filter.values().unset_bits();
    if false_count == filter.len() {
        assert_eq!(array.len(), filter.len());
        return Ok(new_empty_array(array.data_type().clone()));
    }
    if false_count == 0 {
        assert_eq!(array.len(), filter.len());
        return Ok(array.to_boxed());
    }

    use crate::datatypes::PhysicalType::*;
    match array.data_type().to_physical_type() {
        Primitive(primitive) => with_match_primitive_type!(primitive, |$T| {
            let array = array.as_any().downcast_ref().unwrap();
            Ok(Box::new(filter_primitive::<$T>(array, filter)))
        }),
        _ => {
            let iter = SlicesIterator::new(filter.values());
            let mut mutable = make_growable(&[array], false, iter.slots());
            iter.for_each(|(start, len)| mutable.extend(0, start, len));
            Ok(mutable.as_box())
        }
    }
}

/// Returns a new [Chunk] with arrays containing only values matching the filter.
/// This is a convenience function: filter multiple columns is embarassingly parallel.
pub fn filter_chunk<A: AsRef<dyn Array>>(
    columns: &Chunk<A>,
    filter_values: &BooleanArray,
) -> Result<Chunk<Box<dyn Array>>> {
    let arrays = columns.arrays();

    let num_colums = arrays.len();

    let filtered_arrays = match num_colums {
        1 => {
            vec![filter(columns.arrays()[0].as_ref(), filter_values)?]
        }
        _ => {
            let filter = build_filter(filter_values)?;
            arrays.iter().map(|a| filter(a.as_ref())).collect()
        }
    };
    Chunk::try_new(filtered_arrays)
}