1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
use std::{
    fmt::Binary,
    ops::{BitAndAssign, Not, Shl, ShlAssign, ShrAssign},
};

use num_traits::PrimInt;

use super::NativeType;

/// A chunk of bits. This is used to create masks of a given length
/// whose width is `1` bit. In `portable_simd` notation, this corresponds to `m1xY`.
///
/// This (sealed) trait is implemented for [`u8`], [`u16`], [`u32`] and [`u64`].
pub trait BitChunk:
    super::private::Sealed
    + PrimInt
    + NativeType
    + Binary
    + ShlAssign
    + Not<Output = Self>
    + ShrAssign<usize>
    + ShlAssign<usize>
    + Shl<usize, Output = Self>
    + BitAndAssign
{
    /// convert itself into bytes.
    fn to_ne_bytes(self) -> Self::Bytes;
    /// convert itself from bytes.
    fn from_ne_bytes(v: Self::Bytes) -> Self;
}

macro_rules! bit_chunk {
    ($ty:ty) => {
        impl BitChunk for $ty {
            #[inline(always)]
            fn to_ne_bytes(self) -> Self::Bytes {
                self.to_ne_bytes()
            }

            #[inline(always)]
            fn from_ne_bytes(v: Self::Bytes) -> Self {
                Self::from_ne_bytes(v)
            }
        }
    };
}

bit_chunk!(u8);
bit_chunk!(u16);
bit_chunk!(u32);
bit_chunk!(u64);

/// An [`Iterator<Item=bool>`] over a [`BitChunk`]. This iterator is often
/// compiled to SIMD.
/// The [LSB](https://en.wikipedia.org/wiki/Bit_numbering#Least_significant_bit) corresponds
/// to the first slot, as defined by the arrow specification.
/// # Example
/// ```
/// use arrow2::types::BitChunkIter;
/// let a = 0b00010000u8;
/// let iter = BitChunkIter::new(a, 7);
/// let r = iter.collect::<Vec<_>>();
/// assert_eq!(r, vec![false, false, false, false, true, false, false]);
/// ```
pub struct BitChunkIter<T: BitChunk> {
    value: T,
    mask: T,
    remaining: usize,
}

impl<T: BitChunk> BitChunkIter<T> {
    /// Creates a new [`BitChunkIter`] with `len` bits.
    #[inline]
    pub fn new(value: T, len: usize) -> Self {
        assert!(len <= std::mem::size_of::<T>() * 8);
        Self {
            value,
            remaining: len,
            mask: T::one(),
        }
    }
}

impl<T: BitChunk> Iterator for BitChunkIter<T> {
    type Item = bool;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.remaining == 0 {
            return None;
        };
        let result = Some(self.value & self.mask != T::zero());
        self.remaining -= 1;
        self.mask <<= 1;
        result
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.remaining, Some(self.remaining))
    }
}

// # Safety
// a mathematical invariant of this iterator
unsafe impl<T: BitChunk> crate::trusted_len::TrustedLen for BitChunkIter<T> {}

/// An [`Iterator<Item=usize>`] over a [`BitChunk`] returning the index of each bit set in the chunk
/// See <https://lemire.me/blog/2018/03/08/iterating-over-set-bits-quickly-simd-edition/> for details
/// # Example
/// ```
/// use arrow2::types::BitChunkOnes;
/// let a = 0b00010000u8;
/// let iter = BitChunkOnes::new(a);
/// let r = iter.collect::<Vec<_>>();
/// assert_eq!(r, vec![4]);
/// ```
pub struct BitChunkOnes<T: BitChunk> {
    value: T,
    remaining: usize,
}

impl<T: BitChunk> BitChunkOnes<T> {
    /// Creates a new [`BitChunkOnes`] with `len` bits.
    #[inline]
    pub fn new(value: T) -> Self {
        Self {
            value,
            remaining: value.count_ones() as usize,
        }
    }
}

impl<T: BitChunk> Iterator for BitChunkOnes<T> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.remaining == 0 {
            return None;
        }
        let v = self.value.trailing_zeros() as usize;
        self.value &= self.value - T::one();

        self.remaining -= 1;
        Some(v)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.remaining, Some(self.remaining))
    }
}

// # Safety
// a mathematical invariant of this iterator
unsafe impl<T: BitChunk> crate::trusted_len::TrustedLen for BitChunkOnes<T> {}