1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
use std::convert::TryFrom;
use std::ops::Neg;

use bytemuck::{Pod, Zeroable};

use super::PrimitiveType;

/// Sealed trait implemented by all physical types that can be allocated,
/// serialized and deserialized by this crate.
/// All O(N) allocations in this crate are done for this trait alone.
pub trait NativeType:
    super::private::Sealed
    + Pod
    + Send
    + Sync
    + Sized
    + std::fmt::Debug
    + std::fmt::Display
    + PartialEq
    + Default
{
    /// The corresponding variant of [`PrimitiveType`].
    const PRIMITIVE: PrimitiveType;

    /// Type denoting its representation as bytes.
    /// This is `[u8; N]` where `N = size_of::<T>`.
    type Bytes: AsRef<[u8]>
        + std::ops::Index<usize, Output = u8>
        + std::ops::IndexMut<usize, Output = u8>
        + for<'a> TryFrom<&'a [u8]>
        + std::fmt::Debug
        + Default;

    /// To bytes in little endian
    fn to_le_bytes(&self) -> Self::Bytes;

    /// To bytes in big endian
    fn to_be_bytes(&self) -> Self::Bytes;

    /// From bytes in little endian
    fn from_le_bytes(bytes: Self::Bytes) -> Self;

    /// From bytes in big endian
    fn from_be_bytes(bytes: Self::Bytes) -> Self;
}

macro_rules! native_type {
    ($type:ty, $primitive_type:expr) => {
        impl NativeType for $type {
            const PRIMITIVE: PrimitiveType = $primitive_type;

            type Bytes = [u8; std::mem::size_of::<Self>()];
            #[inline]
            fn to_le_bytes(&self) -> Self::Bytes {
                Self::to_le_bytes(*self)
            }

            #[inline]
            fn to_be_bytes(&self) -> Self::Bytes {
                Self::to_be_bytes(*self)
            }

            #[inline]
            fn from_le_bytes(bytes: Self::Bytes) -> Self {
                Self::from_le_bytes(bytes)
            }

            #[inline]
            fn from_be_bytes(bytes: Self::Bytes) -> Self {
                Self::from_be_bytes(bytes)
            }
        }
    };
}

native_type!(u8, PrimitiveType::UInt8);
native_type!(u16, PrimitiveType::UInt16);
native_type!(u32, PrimitiveType::UInt32);
native_type!(u64, PrimitiveType::UInt64);
native_type!(i8, PrimitiveType::Int8);
native_type!(i16, PrimitiveType::Int16);
native_type!(i32, PrimitiveType::Int32);
native_type!(i64, PrimitiveType::Int64);
native_type!(f32, PrimitiveType::Float32);
native_type!(f64, PrimitiveType::Float64);
native_type!(i128, PrimitiveType::Int128);

/// The in-memory representation of the DayMillisecond variant of arrow's "Interval" logical type.
#[derive(Debug, Copy, Clone, Default, PartialEq, Eq, Hash, Zeroable, Pod)]
#[allow(non_camel_case_types)]
#[repr(C)]
pub struct days_ms(pub i32, pub i32);

impl days_ms {
    /// A new [`days_ms`].
    #[inline]
    pub fn new(days: i32, milliseconds: i32) -> Self {
        Self(days, milliseconds)
    }

    /// The number of days
    #[inline]
    pub fn days(&self) -> i32 {
        self.0
    }

    /// The number of milliseconds
    #[inline]
    pub fn milliseconds(&self) -> i32 {
        self.1
    }
}

impl NativeType for days_ms {
    const PRIMITIVE: PrimitiveType = PrimitiveType::DaysMs;
    type Bytes = [u8; 8];
    #[inline]
    fn to_le_bytes(&self) -> Self::Bytes {
        let days = self.0.to_le_bytes();
        let ms = self.1.to_le_bytes();
        let mut result = [0; 8];
        result[0] = days[0];
        result[1] = days[1];
        result[2] = days[2];
        result[3] = days[3];
        result[4] = ms[0];
        result[5] = ms[1];
        result[6] = ms[2];
        result[7] = ms[3];
        result
    }

    #[inline]
    fn to_be_bytes(&self) -> Self::Bytes {
        let days = self.0.to_be_bytes();
        let ms = self.1.to_be_bytes();
        let mut result = [0; 8];
        result[0] = days[0];
        result[1] = days[1];
        result[2] = days[2];
        result[3] = days[3];
        result[4] = ms[0];
        result[5] = ms[1];
        result[6] = ms[2];
        result[7] = ms[3];
        result
    }

    #[inline]
    fn from_le_bytes(bytes: Self::Bytes) -> Self {
        let mut days = [0; 4];
        days[0] = bytes[0];
        days[1] = bytes[1];
        days[2] = bytes[2];
        days[3] = bytes[3];
        let mut ms = [0; 4];
        ms[0] = bytes[4];
        ms[1] = bytes[5];
        ms[2] = bytes[6];
        ms[3] = bytes[7];
        Self(i32::from_le_bytes(days), i32::from_le_bytes(ms))
    }

    #[inline]
    fn from_be_bytes(bytes: Self::Bytes) -> Self {
        let mut days = [0; 4];
        days[0] = bytes[0];
        days[1] = bytes[1];
        days[2] = bytes[2];
        days[3] = bytes[3];
        let mut ms = [0; 4];
        ms[0] = bytes[4];
        ms[1] = bytes[5];
        ms[2] = bytes[6];
        ms[3] = bytes[7];
        Self(i32::from_be_bytes(days), i32::from_be_bytes(ms))
    }
}

/// The in-memory representation of the MonthDayNano variant of the "Interval" logical type.
#[derive(Debug, Copy, Clone, Default, PartialEq, Eq, Hash, Zeroable, Pod)]
#[allow(non_camel_case_types)]
#[repr(C)]
pub struct months_days_ns(pub i32, pub i32, pub i64);

impl months_days_ns {
    /// A new [`months_days_ns`].
    #[inline]
    pub fn new(months: i32, days: i32, nanoseconds: i64) -> Self {
        Self(months, days, nanoseconds)
    }

    /// The number of months
    #[inline]
    pub fn months(&self) -> i32 {
        self.0
    }

    /// The number of days
    #[inline]
    pub fn days(&self) -> i32 {
        self.1
    }

    /// The number of nanoseconds
    #[inline]
    pub fn ns(&self) -> i64 {
        self.2
    }
}

impl NativeType for months_days_ns {
    const PRIMITIVE: PrimitiveType = PrimitiveType::MonthDayNano;
    type Bytes = [u8; 16];
    #[inline]
    fn to_le_bytes(&self) -> Self::Bytes {
        let months = self.months().to_le_bytes();
        let days = self.days().to_le_bytes();
        let ns = self.ns().to_le_bytes();
        let mut result = [0; 16];
        result[0] = months[0];
        result[1] = months[1];
        result[2] = months[2];
        result[3] = months[3];
        result[4] = days[0];
        result[5] = days[1];
        result[6] = days[2];
        result[7] = days[3];
        (0..8).for_each(|i| {
            result[8 + i] = ns[i];
        });
        result
    }

    #[inline]
    fn to_be_bytes(&self) -> Self::Bytes {
        let months = self.months().to_be_bytes();
        let days = self.days().to_be_bytes();
        let ns = self.ns().to_be_bytes();
        let mut result = [0; 16];
        result[0] = months[0];
        result[1] = months[1];
        result[2] = months[2];
        result[3] = months[3];
        result[4] = days[0];
        result[5] = days[1];
        result[6] = days[2];
        result[7] = days[3];
        (0..8).for_each(|i| {
            result[8 + i] = ns[i];
        });
        result
    }

    #[inline]
    fn from_le_bytes(bytes: Self::Bytes) -> Self {
        let mut months = [0; 4];
        months[0] = bytes[0];
        months[1] = bytes[1];
        months[2] = bytes[2];
        months[3] = bytes[3];
        let mut days = [0; 4];
        days[0] = bytes[4];
        days[1] = bytes[5];
        days[2] = bytes[6];
        days[3] = bytes[7];
        let mut ns = [0; 8];
        (0..8).for_each(|i| {
            ns[i] = bytes[8 + i];
        });
        Self(
            i32::from_le_bytes(months),
            i32::from_le_bytes(days),
            i64::from_le_bytes(ns),
        )
    }

    #[inline]
    fn from_be_bytes(bytes: Self::Bytes) -> Self {
        let mut months = [0; 4];
        months[0] = bytes[0];
        months[1] = bytes[1];
        months[2] = bytes[2];
        months[3] = bytes[3];
        let mut days = [0; 4];
        days[0] = bytes[4];
        days[1] = bytes[5];
        days[2] = bytes[6];
        days[3] = bytes[7];
        let mut ns = [0; 8];
        (0..8).for_each(|i| {
            ns[i] = bytes[8 + i];
        });
        Self(
            i32::from_be_bytes(months),
            i32::from_be_bytes(days),
            i64::from_be_bytes(ns),
        )
    }
}

impl std::fmt::Display for days_ms {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}d {}ms", self.days(), self.milliseconds())
    }
}

impl std::fmt::Display for months_days_ns {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}m {}d {}ns", self.months(), self.days(), self.ns())
    }
}

impl Neg for days_ms {
    type Output = Self;

    #[inline(always)]
    fn neg(self) -> Self::Output {
        Self::new(-self.days(), -self.milliseconds())
    }
}

impl Neg for months_days_ns {
    type Output = Self;

    #[inline(always)]
    fn neg(self) -> Self::Output {
        Self::new(-self.months(), -self.days(), -self.ns())
    }
}

/// Type representation of the Float16 physical type
#[derive(Copy, Clone, Default, Zeroable, Pod)]
#[allow(non_camel_case_types)]
#[repr(C)]
pub struct f16(pub u16);

impl PartialEq for f16 {
    #[inline]
    fn eq(&self, other: &f16) -> bool {
        if self.is_nan() || other.is_nan() {
            false
        } else {
            (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
        }
    }
}

// see https://github.com/starkat99/half-rs/blob/main/src/binary16.rs
impl f16 {
    /// The difference between 1.0 and the next largest representable number.
    pub const EPSILON: f16 = f16(0x1400u16);

    #[inline]
    #[must_use]
    pub(crate) const fn is_nan(self) -> bool {
        self.0 & 0x7FFFu16 > 0x7C00u16
    }

    /// Casts this `f16` to `f32`
    pub fn to_f32(self) -> f32 {
        let i = self.0;
        // Check for signed zero
        if i & 0x7FFFu16 == 0 {
            return f32::from_bits((i as u32) << 16);
        }

        let half_sign = (i & 0x8000u16) as u32;
        let half_exp = (i & 0x7C00u16) as u32;
        let half_man = (i & 0x03FFu16) as u32;

        // Check for an infinity or NaN when all exponent bits set
        if half_exp == 0x7C00u32 {
            // Check for signed infinity if mantissa is zero
            if half_man == 0 {
                let number = (half_sign << 16) | 0x7F80_0000u32;
                return f32::from_bits(number);
            } else {
                // NaN, keep current mantissa but also set most significiant mantissa bit
                let number = (half_sign << 16) | 0x7FC0_0000u32 | (half_man << 13);
                return f32::from_bits(number);
            }
        }

        // Calculate single-precision components with adjusted exponent
        let sign = half_sign << 16;
        // Unbias exponent
        let unbiased_exp = ((half_exp as i32) >> 10) - 15;

        // Check for subnormals, which will be normalized by adjusting exponent
        if half_exp == 0 {
            // Calculate how much to adjust the exponent by
            let e = (half_man as u16).leading_zeros() - 6;

            // Rebias and adjust exponent
            let exp = (127 - 15 - e) << 23;
            let man = (half_man << (14 + e)) & 0x7F_FF_FFu32;
            return f32::from_bits(sign | exp | man);
        }

        // Rebias exponent for a normalized normal
        let exp = ((unbiased_exp + 127) as u32) << 23;
        let man = (half_man & 0x03FFu32) << 13;
        f32::from_bits(sign | exp | man)
    }

    /// Casts an `f32` into `f16`
    pub fn from_f32(value: f32) -> Self {
        let x: u32 = value.to_bits();

        // Extract IEEE754 components
        let sign = x & 0x8000_0000u32;
        let exp = x & 0x7F80_0000u32;
        let man = x & 0x007F_FFFFu32;

        // Check for all exponent bits being set, which is Infinity or NaN
        if exp == 0x7F80_0000u32 {
            // Set mantissa MSB for NaN (and also keep shifted mantissa bits)
            let nan_bit = if man == 0 { 0 } else { 0x0200u32 };
            return f16(((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 13)) as u16);
        }

        // The number is normalized, start assembling half precision version
        let half_sign = sign >> 16;
        // Unbias the exponent, then bias for half precision
        let unbiased_exp = ((exp >> 23) as i32) - 127;
        let half_exp = unbiased_exp + 15;

        // Check for exponent overflow, return +infinity
        if half_exp >= 0x1F {
            return f16((half_sign | 0x7C00u32) as u16);
        }

        // Check for underflow
        if half_exp <= 0 {
            // Check mantissa for what we can do
            if 14 - half_exp > 24 {
                // No rounding possibility, so this is a full underflow, return signed zero
                return f16(half_sign as u16);
            }
            // Don't forget about hidden leading mantissa bit when assembling mantissa
            let man = man | 0x0080_0000u32;
            let mut half_man = man >> (14 - half_exp);
            // Check for rounding (see comment above functions)
            let round_bit = 1 << (13 - half_exp);
            if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
                half_man += 1;
            }
            // No exponent for subnormals
            return f16((half_sign | half_man) as u16);
        }

        // Rebias the exponent
        let half_exp = (half_exp as u32) << 10;
        let half_man = man >> 13;
        // Check for rounding (see comment above functions)
        let round_bit = 0x0000_1000u32;
        if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
            // Round it
            f16(((half_sign | half_exp | half_man) + 1) as u16)
        } else {
            f16((half_sign | half_exp | half_man) as u16)
        }
    }
}

impl std::fmt::Debug for f16 {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{:?}", self.to_f32())
    }
}

impl std::fmt::Display for f16 {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.to_f32())
    }
}

impl NativeType for f16 {
    const PRIMITIVE: PrimitiveType = PrimitiveType::Float16;
    type Bytes = [u8; 2];
    #[inline]
    fn to_le_bytes(&self) -> Self::Bytes {
        self.0.to_le_bytes()
    }

    #[inline]
    fn to_be_bytes(&self) -> Self::Bytes {
        self.0.to_be_bytes()
    }

    #[inline]
    fn from_be_bytes(bytes: Self::Bytes) -> Self {
        Self(u16::from_be_bytes(bytes))
    }

    #[inline]
    fn from_le_bytes(bytes: Self::Bytes) -> Self {
        Self(u16::from_le_bytes(bytes))
    }
}

#[cfg(test)]
mod test {
    use super::*;
    #[test]
    fn test_f16_to_f32() {
        let f = f16::from_f32(7.0);
        assert_eq!(f.to_f32(), 7.0f32);

        // 7.1 is NOT exactly representable in 16-bit, it's rounded
        let f = f16::from_f32(7.1);
        let diff = (f.to_f32() - 7.1f32).abs();
        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
        assert!(diff <= 4.0 * f16::EPSILON.to_f32());

        assert_eq!(f16(0x0000_0001).to_f32(), 2.0f32.powi(-24));
        assert_eq!(f16(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));

        assert_eq!(f16(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
        assert_eq!(f16(0x0000_0005), f16::from_f32(5.0 * 2.0f32.powi(-24)));

        assert_eq!(format!("{}", f16::from_f32(7.0)), "7".to_string());
        assert_eq!(format!("{:?}", f16::from_f32(7.0)), "7.0".to_string());
    }
}